Tapd需求单自动创建分支拉流水线 Skill
一、技能概述与价值
1.1 技能定位
这是一个专为Q音iOS团队设计的自动化工具,旨在解决日常开发中的重复性工作:
- 痛点:每次处理新需求时,需要手动创建分支、配置流水线、添加权限
- 方案:通过自动化工具实现一键完成全流程
- 价值:单个需求节省15-20分钟,降低人工操作错误率
1.2 核心功能矩阵
1 | ┌─────────────┬─────────────────────────────┬─────────────────┐ |
这是一个专为Q音iOS团队设计的自动化工具,旨在解决日常开发中的重复性工作:
1 | ┌─────────────┬─────────────────────────────┬─────────────────┐ |
Agent 正在经历从“聊天机器人”到“得力干将”的进化,而 Skills 正是这场进化的关键催化剂。
你是否曾被 Agent 的“不听话”、“执行乱”和“工具荒”搞得焦头烂额?
本文将带你一文弄懂 Skills ——这个让 Agent 变得可靠、可控、可复用的“高级技能包”。
我们将从 Skills 是什么、如何工作,一路聊到怎样写好一个 Skills,并为你推荐实用的社区资源,带领大家在 TRAE 中实际使用 Skills 落地一个场景。
无论你是开发者还是普通用户,都能在这里找到让你的 Agent “开窍”的秘诀。
你是否也经历过或者正在经历这样的“ Agent 调教”崩溃时刻?
如果这些场景让你感同身受,别急着放弃。终结这场混乱的答案,可能就是 Skills。
2025 年 AI 编程工具遍地开花,但一个尴尬的现实是:工具越来越强,预期越来越高,落地却越来越难——speckit 的规范流程在企业需求的”千层套路”、海量代码面前显得理想化,上下文窗口频繁爆满让复杂任务半途而废,每次做类似需求还是要花同样的时间因为知识全在人脑里。本文记录了我从踩坑规范驱动工具,到借鉴 Anthropic 多 Agent 协作架构、融合上下文工程与复合工程理念,最终实现边际成本递减、知识持续复利的完整历程。如果你也在”AI 工具明明很强但就是用不好”的困境中挣扎,或许能找到一些共鸣。附带还有新的工作流下人的工作模式转变思考~
1.0 团队的 AI Coding 起点
先交代一下背景:我所在的是一个后端研发团队,日常工作以存量项目迭代为主,涉及多个微服务的协作开发。
2024 年中,团队开始尝试 AI 辅助编程。最初的体验是:
短上下文场景效果不错:
但规模化复用始终没起来:
原因分析:
这个困境促使我开始探索外部方案:有没有已经成熟的”AI 编程工程化”方法论?有没有可以直接借鉴的最佳实践?
带着这些问题,我遇到了 speckit 和 openspec。
Title: 彻底爆了!一文吃透AIGC、Agent、MCP的概念和关系-腾讯云开发者社区-腾讯云
导语: 近年来,人工智能 领域涌现出许多新概念和新技术,其中AIGC、MCP和 Agent 成为了业界和学术界的热门话题。本文将深入浅出地介绍这三个概念,帮助读者全面理解它们的内涵、区别与联系,以及在实际应用中的价值。
AIGC,全称为 AI Generated Content,意为“人工智能生成内容”。它指的是利用人工智能技术(尤其是大模型,如GPT、Stable Diffusion 等)自动生成文本、图片、音频、视频等多种内容的过程。2022 年 11 月 30 日,OpenAI 的 ChatGPT 正式上线(基于 GPT-3.5),引爆了 AIGC 热潮。
理解 AI coding 智能体的设计,可以帮助开发者更好地使用 AI coding 工具,实现开发提效。
了解用户提示词预处理,帮助我们写出高效的用户提示词。例如:为什么在提示词中使用 @字符引入文件、目录作为上下文,可以减少会话轮次?如何自定义命令?
在分析 Gemini-CLI 过程中,特别感谢 Qwen Code 团队,他们的开源项目中的 openaiContentGenerator包提供了OpenAI API的兼容层,使用这个模块可以很容易将 Gemini-CLI 内置的谷歌认证和外部模型切换为公司内部模型。
在 Gemini-CLI 中输入提示词,首先对输入的内容进行预处理。
Gemini-CLI 的内置命令在 packages/cli/src/ui/commands/目录下定义。
例如 clear 命令在文件 packages/cli/src/ui/commands/clearCommand.ts 中定义。
内置命令可以执行特定操作。例如:/clear 命令用于重置对话、清空上下文。
内置命令可以使用预置用户提示词调用大模型完成相关任务。例如:/init 命令使用大模型分析工程代码创建 GEMINI.md 文件。
内置命令列表参见:docs/cli/commands.md。
话题内容:
话题背景:随着LLM的能力提升,从早些AI产品能快速帮助用户制作prototype,到现在当前市面上不断涌现出新的AI Coding工具,这些AI Coding背后的工具原理是什么?我们在选择这些AI Coding工具的时候,需要关注哪些信息,了解背后的原理,才能更好地使用这些工具。
Q:回想一下,你接触过哪些AI Coding工具?当前使用过程中有哪些问题?
当我第一次接触到Claude code的时候,很惊讶发现他是一个命令行工具,他不是一个IDE,甚至都不是一个插件,当时在想,是时代在倒退么?为什么还会有AI产品是一个命令行工具,像是回到了linux时代。随着使用越来越深入,逐渐发现了他的魅力。
在人工智能编程工具的浪潮中,CLI工具的崛起并非偶然。它的成功不仅在于强大的代码生成能力,更深层次的原因在于其背后遵循了一套历久弥新的设计哲学——与经典的Unix哲学不谋而合。
本文系统回顾了淘特导购团队在AI编码实践中的演进历程,从初期的代码智能补全到Agent Coding再到引入Rules约束,最终探索SDD(Specification Driven Development,规格驱动开发)——以自然语言规格(spec.md)为唯一真理源,驱动代码、测试、文档自动生成,实现设计先行、可测试性内建与文档永不过期。实践中发现SDD理念先进但落地门槛高、工具链不成熟、历史代码集成难,因此团队当前采用融合策略:以轻量级技术方案模板为输入 + Rules严格约束 + Agent Coding高效实现 + AI自动汇总架构文档,形成兼顾规范性、效率与可维护性的AI辅助编程最佳实践。
生成式AI技术的范式突破正驱动智能开发工具进入超线性演进阶段,主流代码生成工具的迭代周期已从季度级压缩至周级,智能体架构创新推动开发效能持续提升。
淘特导购系统承载着商品推荐、会场投放、活动营销等多样化的业务场景,技术团队面临着需求迭代频繁、代码腐化及团队协作度高的问题,如何提升开发效率、保证代码质量、降低维护成本成为我们面临的重要挑战。正是在这样的背景下,我们开始尝试将AI技术融入到日常开发流程中,探索从传统编码到AI辅助编程的转变之路。
2024年初,团队开始探索AI编程工具,希望通过AI提升开发效率和代码质量。最初接触的是Aone Copilot(阿里内部AI工具)的代码智能补全功能,后来逐步尝试Agentic Coding、Rules约束、SDD(Specification Driven Development)等多种AI编程模式。本文将详细记录我们的探索历程、实践经验以及对AI编程未来的思考。
Kuikly(Kotlin UI Kit,发音同quickly),是使用Kotlin开发了声明式UI框架,映射到系统原生控件做渲染,最终用KMM(Kotlin Multiplatform Mobile)实现跨端。
Kuikly是一个开发语言高度同源的跨端框架,从业务代码、UI框架、布局层以及渲染层全部使用Kotlin语言(iOS渲染层是OC),这样不仅减少跨语言通信的性能成本,而且开发体验上更纯粹和高效。编译产物上,Android端采用原生的AAR方式,而iOS端通过KMM编译生成.framework,这样就不仅保证了原生开发体验,也保证了原生性能。如果希望实现动态化,Android端可以通过KMM编译成SO,iOS端可以编译成JS(KMM已经可以编译成Wasm,未来有稳定版本后就可以正式使用)。Kuikly具有优异的原生开发体验,相比于Hippy,更符合终端开发习惯。
自我介绍:
演讲选题思考:
演讲结构:
当前工具分类的模糊性: